organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Dimethylamino-1-(2-ethoxy-2-oxoethyl)-3-methyl-3,4,5,6-tetrahydropyrimidin-1-ium tetraphenylborate

Ioannis Tiritiris^a and Willi Kantlehner^b*

^aInstitut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, and ^bFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany Correspondence e-mail: willi.kantlehner@htw-aalen.de

Received 24 May 2012; accepted 25 May 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.097; data-to-parameter ratio = 18.0.

Isolated guanidinium ions and tetraphenylborate ions are present in the crystal structure of the title compound, $C_{11}H_{22}N_3O_2^+ \cdot C_{24}H_{20}B^-$. In the guanidinium ion, the dihedral angle between the N/C/N and C/C/C planes being 49.9 (1)°. The six-membered ring exhibits a half-chair conformation. The C-N bond lengths in the cation range between 1.3335 (16) and 1.3552 (16) Å, indicating charge delocalization on the CN_3 plane. In the crystal, the cations are connected by $C-H\cdots O$ hydrogen bonds, generating a chain along the c axis.

Related literature

For the synthesis and nematocidal activity of arylvinyltetrahydropyrimidines, see: Kraouti et al. (1993). For the synthesis and nematocidal activity of pyrantel analogs, see: Kraouti et al. (1995). For the synthesis of 1-methyl-2-dimethylamino-1,4,5,6tetrahydropyrimidine and derived cyclic guanidinium salts, see: Tiritiris & Kantlehner (2012).

mm

6747 independent reflections

 $R_{\rm int} = 0.035$

5041 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

C H N C + C H P=	17 2040 14 (10)
$C_{11}H_{22}N_3O_2 \cdot C_{24}H_{20}B$	V = 2949.14 (19) A
$M_r = 547.53$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 14.3582 (5) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 10.3377 (3) Å	$T = 100 { m K}$
c = 20.6302 (9) Å	$0.23 \times 0.16 \times 0.13$
$\beta = 105.615 \ (1)^{\circ}$	
Data collection	

Bruker-Nonius Kappa CCD diffractometer 13034 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ 374 parameters $wR(F^2) = 0.097$ H-atom parameters constrained S = 1.02 $\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.21$ e Å⁻³ 6747 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C10-H10B\cdotsO1^{i}$	0.99	2.44	3.397 (2)	163
Symmetry code: (i) -x, y	$-\frac{1}{2}$, -7 $+\frac{1}{2}$.			

Data collection: COLLECT (Hooft, 2004); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97.

The authors thank Dr Falk Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2422).

References

- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Hooft, R. W. W. (2004). COLLECT. Nonius BV, Delft, The Netherlands.
- Kraouti, N., Caujolle, R., Labidalle, S., Payard, M., Bories, C., Loiseau, P. M. & Gayral, P. (1993). Eur. J. Med. Chem. 28, 979-982.
- Kraouti, N., Caujolle, R., Labidalle, S., Payard, M., Loiseau, P. M., Bories, C. & Gayral, P. (1995). Eur. J. Med. Chem. 30, 509-513.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tiritiris, I. & Kantlehner, W. (2012). Z. Naturforsch. Teil B. In the press.

supplementary materials

Acta Cryst. (2012). E68, o2002 [doi:10.1107/S1600536812023951]

2-Dimethylamino-1-(2-ethoxy-2-oxoethyl)-3-methyl-3,4,5,6-tetrahydropyrimidin-1-ium tetraphenylborate

Ioannis Tiritiris and Willi Kantlehner

Comment

Tetrahydropyrimidine derivatives very often show pharmacologic activity. Prominent members are the cyclic amidines oxantel (Kraouti *et al.*, 1993) and pyrantel (Kraouti *et al.*, 1995), which are showing an anthelmintic effect against intestinal nematode infestations in humans and animals. 1-Methyl-2-dimethylamino-1,4,5,6-tetrahydropyrimidine (Tiritiris & Kantlehner, 2012), a cyclic guanidine derivative synthesized by us recently, could be used as a new candidate for preparing potentially pharmacologically active compounds in this field. By alkylation of the free nitrogen of the guanidine base, various cyclic guanidinium salts have been obtained and characterised (Tiritiris & Kantlehner, 2012). One of them, is the here presented title compound (Fig. 1). In the crystal structure of the salt,

isolated cations and anions are present. No specific interactions between the guanidinium ions and the tetraphenylborate ions have been observed. Prominent bond parameters in the guanidinium ion are: C1-N1 = 1.355 (2) Å, C1-N2 = 1.334 (2) Å and C1-N3 = 1.343 (2) Å. The N–C1–N angles are: 120.0 (1)° (N1–C1–N2), 120.3 (1)° (N2–C1–N3) and 119.8 (1)° (N1–C1–N3), which indicates a nearly ideal trigonal-planar surrounding of the carbon centre by the nitrogen atoms. The positive charge is completely delocalized on the CN_3 plane. Bond lengths between carbon and oxygen atoms in the ethoxycarbonylmethyl group are: C9–O1 = 1.206 (2) Å, C9–O2 = 1.333 (2) Å and C10–O2 = 1.467 (2) Å. The six membered ring is non planar (Fig. 1). The carbon atom C6 is not in the ring plane, the angle between the planes N3/C1/N2 and C5/C6/C7 is 49.9 (1)°. Finally, weak C–H…O hydrogen bonds between methylene hydrogen atoms and carbonyl oxygen atoms of neighbouring guanidinium ions have been determined [d(H.O) = 2.44 Å] (Tab. 1). The cations are connected by C–H…O hydrogen bonds, generating a chain (Fig. 2). The anions are packed inbetween these chains using van der Waals interactions, only.

Experimental

The title compound was obtained by reaction of 1-methyl-2-dimethylamino-1,4,5,6-tetrahydropyrimidine with bromoacetic acid ethyl ester in acetonitrile at room temperature. After evaporation of the solvent the crude 2-dimethylamino-3ethoxycarbonylmethyl-1-methyl-1,4,5,6- tetrahydropyrimidinium-bromide (I) was washed with diethylether and dried *in vacuo*. 1.05 g (3.4 mmol) of (I) was dissolved in 20 mL acetonitrile and 1.16 g (3.4 mmol) of sodium tetraphenylborate in 10 mL acetonitrile was added. After stirring for one h at room temperature, the precipitated sodium bromide was filtered off. The title compound crystallised from a saturated acetonitrile solution after several days at 273 K, forming colourless single crystals. Yield: 1.43 g (78.8%).

Refinement

The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N bond to best fit the experimental electron density, with U(H) set to 1.5 $U_{eq}(C)$ and d(C-H) = 0.98 Å. The remaining H atoms were placed in

calculated positions with d(C-H) = 0.99 Å (H atoms in CH₂ groups) and (C-H) = 0.95 Å (H atoms in aromatic rings). They were included in the refinement in the riding model approximation, with U(H) set to 1.2 $U_{eq}(C)$.

Computing details

Data collection: *COLLECT* (Hooft, 2004); cell refinement: *HKL SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *HKL SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

The structure of the title compound with atom labels and 50% probability displacement ellipsoids. All H atoms have been omitted for clarity.

Figure 2

C—H…O hydrogen bonds between the guanidinium ions in *ab*-view. The hydrogen bonds are indicated by dashed lines.

2-Dimethylamino-1-(2-ethoxy-2-oxoethyl)-3-methyl-3,4,5,6- tetrahydropyrimidin-1-ium tetraphenylborate

F(000) = 1176

 $\theta = 0.4 - 27.5^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$

T = 100 K

 $D_{\rm x} = 1.233 \text{ Mg m}^{-3}$

Melting point: 458 K

Polyhedral, colourless

 $0.23 \times 0.16 \times 0.13$ mm

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 7081 reflections

Crystal data

 $C_{11}H_{22}N_{3}O_{2}^{+} \cdot C_{24}H_{20}B^{-}$ $M_{r} = 547.53$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 14.3582 (5) Å b = 10.3377 (3) Å c = 20.6302 (9) Å $\beta = 105.615$ (1)° V = 2949.14 (19) Å³ Z = 4

Data collection

Bruker–Nonius Kappa CCD	5041 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.035$
Radiation source: sealed tube	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 1.5^{\circ}$
Graphite monochromator	$h = -18 \rightarrow 18$
φ scans, and ω scans	$k = -13 \rightarrow 13$
13034 measured reflections	$l = -26 \rightarrow 26$
6747 independent reflections	
-	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.097$	H-atom parameters constrained
S = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0412P)^2 + 0.9044P]$
6747 reflections	where $P = (F_o^2 + 2F_c^2)/3$
374 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta ho_{ m max} = 0.30 \ m e \ m \AA^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.28958 (8)	0.25769 (11)	0.34347 (6)	0.0115 (3)
N1	0.27143 (7)	0.17051 (10)	0.38759 (5)	0.0139 (2)
C2	0.17367 (9)	0.12719 (13)	0.38452 (7)	0.0175 (3)
H2A	0.1273	0.1724	0.3480	0.026*
H2B	0.1593	0.1462	0.4273	0.026*

H2C	0.1687	0.0338	0.3762	0.026*
C3	0.34770 (9)	0.12482 (13)	0.44516 (7)	0.0173 (3)
H3A	0.4109	0.1504	0.4397	0.026*
H3B	0.3446	0.0303	0.4479	0.026*
H3C	0.3388	0.1631	0.4866	0.026*
N2	0.34721 (7)	0.35845 (10)	0.36596 (5)	0.0130 (2)
C4	0.35502 (10)	0.41502 (13)	0.43243 (6)	0.0175 (3)
H4A	0.3116	0.3692	0.4540	0.026*
H4B	0.3369	0.5066	0.4273	0.026*
H4C	0.4218	0.4071	0.4604	0.026*
C5	0.37840 (9)	0.44036 (12)	0.31723 (6)	0.0151 (3)
H5A	0.4279	0.3948	0.3005	0.018*
H5B	0.4068	0.5219	0.3390	0.018*
C6	0.29063 (9)	0.46922 (12)	0.25951 (7)	0.0163 (3)
H6A	0.2405	0.5133	0.2764	0.020*
H6B	0.3087	0.5266	0.2264	0.020*
C7	0.25227 (10)	0.34237 (13)	0.22685 (6)	0.0177 (3)
H7A	0.1860	0.3555	0.1975	0.021*
H7B	0.2935	0.3128	0.1983	0.021*
N3	0.25016 (7)	0.24143 (10)	0.27716 (5)	0.0130 (2)
C8	0.21616 (9)	0.11507 (12)	0.24902 (6)	0.0146 (3)
H8A	0.2400	0.0478	0.2837	0.017*
H8B	0.2435	0.0966	0.2108	0.017*
C9	0.10628 (9)	0.10783 (12)	0.22489 (6)	0.0147 (3)
01	0.05354 (6)	0.20070 (9)	0.21392 (5)	0.0202 (2)
O2	0.07769 (6)	-0.01524 (9)	0.21815 (5)	0.0186 (2)
C10	-0.02683 (9)	-0.03720 (13)	0.19344 (7)	0.0199 (3)
H10A	-0.0618	0.0332	0.2094	0.024*
H10B	-0.0437	-0.1199	0.2117	0.024*
C11	-0.05773 (10)	-0.04170 (14)	0.11791 (7)	0.0229 (3)
H11A	-0.0420	0.0407	0.0999	0.034*
H11B	-0.1276	-0.0566	0.1024	0.034*
H11C	-0.0237	-0.1121	0.1021	0.034*
B1	0.72345 (10)	0.26120 (14)	0.43053 (7)	0.0121 (3)
C12	0.62846 (8)	0.20787 (11)	0.37300 (6)	0.0118 (2)
C13	0.57673 (9)	0.09718 (12)	0.38220 (6)	0.0158 (3)
H13A	0.5935	0.0560	0.4249	0.019*
C14	0.50187 (9)	0.04537 (13)	0.33128 (7)	0.0181 (3)
H14A	0.4681	-0.0289	0.3400	0.022*
C15	0.47629 (9)	0.10144 (13)	0.26797 (7)	0.0162 (3)
H15A	0.4251	0.0666	0.2331	0.019*
C16	0.52690 (9)	0.20960 (12)	0.25643 (6)	0.0151 (3)
H16A	0.5109	0.2487	0.2132	0.018*
C17	0.60097 (9)	0.26084 (12)	0.30805 (6)	0.0131 (3)
H17A	0.6344	0.3350	0.2989	0.016*
C18	0.73770 (9)	0.41831 (12)	0.42497 (6)	0.0126 (3)
C19	0.65918 (9)	0.50381 (12)	0.40846 (6)	0.0142 (3)
H19A	0.5956	0.4691	0.3960	0.017*
C20	0.67052 (10)	0.63761 (12)	0.40953 (6)	0.0165 (3)

H20A	0.6152	0.6920	0.3976	0.020*
C21	0.76223 (10)	0.69196 (12)	0.42790 (6)	0.0175 (3)
H21A	0.7703	0.7832	0.4288	0.021*
C22	0.84182 (10)	0.61043 (13)	0.44488 (7)	0.0184 (3)
H22A	0.9052	0.6459	0.4577	0.022*
C23	0.82928 (9)	0.47688 (12)	0.44329 (6)	0.0158 (3)
H23A	0.8850	0.4231	0.4551	0.019*
C24	0.71533 (9)	0.24075 (11)	0.50776 (6)	0.0123 (3)
C25	0.62668 (9)	0.24171 (12)	0.52421 (7)	0.0152 (3)
H25A	0.5687	0.2474	0.4888	0.018*
C26	0.62008 (10)	0.23463 (12)	0.59031 (7)	0.0193 (3)
H26A	0.5584	0.2343	0.5990	0.023*
C27	0.70307 (11)	0.22805 (13)	0.64337 (7)	0.0215 (3)
H27A	0.6989	0.2225	0.6885	0.026*
C28	0.79239 (10)	0.22970 (13)	0.62940 (7)	0.0201 (3)
H28A	0.8500	0.2269	0.6652	0.024*
C29	0.79771 (10)	0.23546 (12)	0.56298 (6)	0.0158 (3)
H29A	0.8597	0.2358	0.5547	0.019*
C30	0.81220 (8)	0.17917 (12)	0.41432 (6)	0.0126 (3)
C31	0.84580 (9)	0.06116 (12)	0.44527 (7)	0.0161 (3)
H31A	0.8215	0.0319	0.4812	0.019*
C32	0.91335 (9)	-0.01510 (13)	0.42549 (7)	0.0198 (3)
H32A	0.9350	-0.0938	0.4484	0.024*
C33	0.94894 (9)	0.02374 (13)	0.37262 (7)	0.0217 (3)
H33A	0.9941	-0.0285	0.3583	0.026*
C34	0.91763 (9)	0.14018 (14)	0.34078 (7)	0.0201 (3)
H34A	0.9418	0.1683	0.3046	0.024*
C35	0.85121 (9)	0.21571 (13)	0.36156 (6)	0.0158 (3)
H35A	0.8313	0.2954	0.3392	0.019*

Atomic displacement parameters $(Å^2)$

	7 711	1 722	T 722	1 71 2	T 71 3	T 7)2
	U^{ii}	U^{22}	U^{ss}	U^{12}	U^{13}	U^{23}
C1	0.0109 (6)	0.0104 (6)	0.0133 (6)	0.0025 (5)	0.0037 (5)	0.0003 (5)
N1	0.0139 (5)	0.0132 (5)	0.0138 (5)	-0.0011 (4)	0.0025 (4)	0.0033 (4)
C2	0.0178 (6)	0.0163 (6)	0.0195 (7)	-0.0016 (5)	0.0071 (5)	0.0022 (5)
C3	0.0208 (7)	0.0149 (6)	0.0146 (6)	0.0026 (5)	0.0021 (5)	0.0031 (5)
N2	0.0155 (5)	0.0122 (5)	0.0115 (5)	-0.0021 (4)	0.0040 (4)	-0.0007 (4)
C4	0.0224 (7)	0.0155 (6)	0.0139 (6)	-0.0024 (5)	0.0039 (5)	-0.0038 (5)
C5	0.0168 (6)	0.0133 (6)	0.0164 (6)	-0.0025 (5)	0.0066 (5)	0.0002 (5)
C6	0.0183 (6)	0.0143 (6)	0.0172 (6)	-0.0007 (5)	0.0065 (5)	0.0035 (5)
C7	0.0229 (7)	0.0176 (7)	0.0116 (6)	-0.0019 (5)	0.0030 (5)	0.0027 (5)
N3	0.0160 (5)	0.0109 (5)	0.0115 (5)	-0.0011 (4)	0.0027 (4)	-0.0005 (4)
C8	0.0163 (6)	0.0119 (6)	0.0150 (6)	-0.0011 (5)	0.0034 (5)	-0.0032 (5)
C9	0.0189 (6)	0.0131 (6)	0.0119 (6)	-0.0019 (5)	0.0041 (5)	-0.0031 (5)
01	0.0177 (5)	0.0153 (5)	0.0266 (5)	0.0016 (4)	0.0041 (4)	-0.0034 (4)
O2	0.0182 (5)	0.0145 (5)	0.0209 (5)	-0.0037 (4)	0.0015 (4)	-0.0023 (4)
C10	0.0180 (7)	0.0197 (7)	0.0228 (7)	-0.0063 (5)	0.0070 (5)	-0.0031 (6)
C11	0.0200 (7)	0.0246 (7)	0.0226 (7)	-0.0001 (6)	0.0032 (6)	-0.0010 (6)
B1	0.0146 (7)	0.0124 (7)	0.0094 (7)	-0.0008 (5)	0.0033 (5)	0.0003 (5)

C12	0.0124 (6)	0.0109 (6)	0.0130 (6)	0.0014 (5)	0.0050 (5)	-0.0020 (5)
C13	0.0202 (7)	0.0147 (6)	0.0126 (6)	-0.0012 (5)	0.0044 (5)	0.0008 (5)
C14	0.0197 (7)	0.0151 (6)	0.0210 (7)	-0.0062 (5)	0.0083 (5)	-0.0046 (5)
C15	0.0127 (6)	0.0186 (7)	0.0165 (6)	0.0001 (5)	0.0026 (5)	-0.0074 (5)
C16	0.0178 (6)	0.0158 (6)	0.0115 (6)	0.0037 (5)	0.0036 (5)	-0.0006 (5)
C17	0.0151 (6)	0.0107 (6)	0.0145 (6)	0.0005 (5)	0.0055 (5)	-0.0011 (5)
C18	0.0180 (6)	0.0132 (6)	0.0069 (6)	-0.0009 (5)	0.0040 (5)	-0.0002 (5)
C19	0.0165 (6)	0.0156 (6)	0.0103 (6)	-0.0015 (5)	0.0033 (5)	-0.0014 (5)
C20	0.0227 (7)	0.0149 (6)	0.0114 (6)	0.0041 (5)	0.0036 (5)	0.0002 (5)
C21	0.0308 (7)	0.0115 (6)	0.0107 (6)	-0.0032 (5)	0.0066 (5)	-0.0003 (5)
C22	0.0198 (7)	0.0185 (7)	0.0174 (7)	-0.0065 (5)	0.0059 (5)	-0.0013 (5)
C23	0.0172 (6)	0.0145 (6)	0.0154 (6)	-0.0004 (5)	0.0038 (5)	-0.0001 (5)
C24	0.0182 (6)	0.0062 (5)	0.0129 (6)	-0.0008 (5)	0.0049 (5)	-0.0005 (5)
C25	0.0192 (6)	0.0103 (6)	0.0172 (6)	-0.0018 (5)	0.0068 (5)	-0.0009 (5)
C26	0.0273 (7)	0.0120 (6)	0.0237 (7)	-0.0019 (5)	0.0157 (6)	-0.0006 (5)
C27	0.0407 (8)	0.0136 (6)	0.0133 (6)	0.0003 (6)	0.0127 (6)	0.0000 (5)
C28	0.0299 (8)	0.0149 (6)	0.0129 (6)	0.0007 (6)	0.0013 (5)	-0.0009 (5)
C29	0.0187 (6)	0.0133 (6)	0.0152 (6)	-0.0012 (5)	0.0044 (5)	-0.0004 (5)
C30	0.0116 (6)	0.0133 (6)	0.0122 (6)	-0.0039 (5)	0.0017 (5)	-0.0042 (5)
C31	0.0164 (6)	0.0149 (6)	0.0167 (7)	-0.0018 (5)	0.0038 (5)	-0.0013 (5)
C32	0.0162 (6)	0.0143 (6)	0.0265 (7)	0.0004 (5)	0.0017 (5)	-0.0036 (6)
C33	0.0123 (6)	0.0207 (7)	0.0325 (8)	-0.0017 (5)	0.0066 (6)	-0.0124 (6)
C34	0.0169 (7)	0.0242 (7)	0.0219 (7)	-0.0063 (6)	0.0098 (5)	-0.0071 (6)
C35	0.0159 (6)	0.0154 (6)	0.0162 (6)	-0.0036 (5)	0.0044 (5)	-0.0031 (5)

Geometric parameters (Å, °)

C1—N2	1.3335 (16)	C12—C13	1.4047 (17)
C1—N3	1.3427 (16)	C13—C14	1.3921 (18)
C1—N1	1.3552 (16)	C13—H13A	0.9500
N1—C2	1.4584 (16)	C14—C15	1.3851 (19)
N1—C3	1.4604 (16)	C14—H14A	0.9500
C2—H2A	0.9800	C15—C16	1.3886 (18)
C2—H2B	0.9800	C15—H15A	0.9500
C2—H2C	0.9800	C16—C17	1.3914 (17)
С3—НЗА	0.9800	C16—H16A	0.9500
С3—Н3В	0.9800	C17—H17A	0.9500
С3—Н3С	0.9800	C18—C19	1.4005 (18)
N2—C4	1.4672 (16)	C18—C23	1.4040 (18)
N2—C5	1.4732 (16)	C19—C20	1.3923 (18)
C4—H4A	0.9800	C19—H19A	0.9500
C4—H4B	0.9800	C20—C21	1.3872 (19)
C4—H4C	0.9800	C20—H20A	0.9500
C5—C6	1.5123 (18)	C21—C22	1.3869 (19)
C5—H5A	0.9900	C21—H21A	0.9500
С5—Н5В	0.9900	C22—C23	1.3916 (18)
C6—C7	1.5091 (18)	C22—H22A	0.9500
С6—Н6А	0.9900	С23—Н23А	0.9500
С6—Н6В	0.9900	C24—C25	1.4028 (18)
C7—N3	1.4779 (16)	C24—C29	1.4052 (18)

C7—H7A	0.9900	C25—C26	1.3940 (19)
C7—H7B	0.9900	C25—H25A	0.9500
N3-C8	1,4592 (15)	C26—C27	1.386 (2)
C8—C9	1 5231 (18)	C26—H26A	0.9500
C8—H8A	0 9900	$C_{27} - C_{28}$	1.388(2)
C8—H8B	0.9900	C_{27} H_{27}	0.9500
C901	1 2058 (16)	C_{28} C_{29}	1 3939 (19)
C9-O2	1 3326 (15)	C28—H28A	0.9500
02-C10	1 4669 (16)	C29_H29A	0.9500
C10-C11	1 5017 (19)	C_{30} C_{31}	1 4010 (18)
C10 $H10A$	0.9900	C_{30} C_{35}	1.4033(18)
C10_H10B	0.9900	C_{31} C_{32}	1.4035(10) 1.3034(10)
	0.9900	$C_{31} = C_{32}$	0.9500
C11 H11B	0.9800	C_{32} C_{33}	1.383(2)
	0.9800	$C_{22} = C_{23}$	1.383(2)
$P_1 = C_{20}$	1,2000	C32—H32A	0.9300
B1-C34	1.0303(10) 1.(422(10))	$C_{22} = U_{22} A$	1.387 (2)
BI	1.6422(18)	C33—H33A	0.9500
BI-CI2	1.6436 (18)	C34—C35	1.3868 (19)
	1.6449 (18)	C34—H34A	0.9500
C12—C17	1.4023 (17)	С35—Н35А	0.9500
N2—C1—N3	120.28 (11)	C24—B1—C18	103.73 (10)
N2—C1—N1	119.95 (11)	C12—B1—C18	112.05 (10)
N3—C1—N1	119.77 (11)	C17—C12—C13	115.10(11)
C1—N1—C2	122.14 (10)	C17—C12—B1	121.63 (11)
C1—N1—C3	121.58 (10)	C13—C12—B1	122.81 (11)
C2—N1—C3	115.99 (10)	C14—C13—C12	122.71 (12)
N1—C2—H2A	109.5	C14—C13—H13A	118.6
N1—C2—H2B	109.5	C12—C13—H13A	118.6
H2A—C2—H2B	109.5	C15-C14-C13	120.37 (12)
N1—C2—H2C	109.5	C15—C14—H14A	119.8
$H^2A - C^2 - H^2C$	109.5	C13—C14—H14A	119.8
$H^2B - C^2 - H^2C$	109.5	C14-C15-C16	118 71 (12)
N1_C3_H3A	109.5	C14 - C15 - H15A	120.6
N1_C3_H3B	109.5	C_{16} C_{15} H_{15A}	120.0
$H_3 \Delta (3 - H_3 B)$	109.5	$C_{10} = C_{10} = M_{10} M_{10}$	120.0 120.19(12)
N1 C3 H3C	109.5	$C_{15} = C_{16} = C_{17}$	110.0
$H_{2A} = C_{2} = H_{2C}$	109.5	C17 C16 H16A	119.9
$H_{2D} = C_2 = H_2C$	109.5	C16 C17 C12	119.9
$n_{3}b_{-}C_{3}$	109.3	C16 - C17 - C12	122.90 (12)
C1 = N2 = C4	121.30(11) 110.05(10)	$C_{10} - C_{17} - H_{17A}$	110.5
C1 - N2 - C3	119.03(10)	C12 - C17 - H17A	116.5
C4 - N2 - C3	110.01 (10)	C19 - C18 - C23	115.52(11)
N2—C4—H4A	109.5	C19—C18—B1	122.21(11)
1N2 - U4 - H4B	109.5	$\begin{array}{c} C_{23} \\ \hline C_{20} \\ \hline C_{10} \hline \hline C_{10} \\ \hline C_{10} \hline \hline C_{10} \\ \hline C_{10} \hline \hline C_{1$	122.14(11)
H4A - U4 - H4B	109.5	$C_{20} = C_{19} = C_{18}$	122.69 (12)
N2-U4-H4U	109.5	C10 C10 H10A	118./
H4A—U4—H4U	109.5	C18—C19—H19A	118./
H4B-C4-H4C	109.5	C21—C20—C19	120.34 (12)
N2-C5-C6	107.98 (10)	C21—C20—H20A	119.8

N2—C5—H5A	110.1	C19—C20—H20A	119.8
С6—С5—Н5А	110.1	C22—C21—C20	118.68 (12)
N2—C5—H5B	110.1	C22—C21—H21A	120.7
С6—С5—Н5В	110.1	C20—C21—H21A	120.7
H5A—C5—H5B	108.4	C21—C22—C23	120.29 (12)
C7—C6—C5	107.87 (10)	C21—C22—H22A	119.9
С7—С6—Н6А	110.1	C23—C22—H22A	119.9
С5—С6—Н6А	110.1	C22—C23—C18	122.68 (12)
С7—С6—Н6В	110.1	C22—C23—H23A	118.7
С5—С6—Н6В	110.1	C18—C23—H23A	118.7
H6A—C6—H6B	108.4	C25—C24—C29	115.13 (12)
N3—C7—C6	111.95 (10)	C25—C24—B1	122.68 (11)
N3—C7—H7A	109.2	C29—C24—B1	121.83 (11)
С6—С7—Н7А	109.2	C26—C25—C24	122.77 (12)
N3—C7—H7B	109.2	C26—C25—H25A	118.6
С6—С7—Н7В	109.2	C24—C25—H25A	118.6
H7A—C7—H7B	107.9	C27—C26—C25	120.33 (13)
C1—N3—C8	121.44 (10)	C27—C26—H26A	119.8
C1—N3—C7	122.99 (10)	C25—C26—H26A	119.8
C8—N3—C7	114.86 (10)	C26—C27—C28	118.76 (12)
N3—C8—C9	112.35 (10)	C26—C27—H27A	120.6
N3—C8—H8A	109.1	C28—C27—H27A	120.6
С9—С8—Н8А	109.1	C27—C28—C29	120.18 (13)
N3—C8—H8B	109.1	C27—C28—H28A	119.9
C9—C8—H8B	109.1	C29—C28—H28A	119.9
H8A—C8—H8B	107.9	C28—C29—C24	122.80(13)
01—C9—O2	125.47 (12)	C28—C29—H29A	118.6
01—C9—C8	124.41 (11)	C24—C29—H29A	118.6
O2—C9—C8	110.12 (10)	C31—C30—C35	115.31 (12)
C9—O2—C10	116.21 (10)	C31—C30—B1	123.30 (11)
O2—C10—C11	110.74 (11)	C35—C30—B1	120.91 (11)
O2-C10-H10A	109.5	C32—C31—C30	122.73 (13)
C11—C10—H10A	109.5	C32—C31—H31A	118.6
O2—C10—H10B	109.5	C30—C31—H31A	118.6
C11—C10—H10B	109.5	C33—C32—C31	120.05 (13)
H10A—C10—H10B	108.1	C33—C32—H32A	120.0
C10-C11-H11A	109.5	C31—C32—H32A	120.0
C10-C11-H11B	109.5	C32—C33—C34	118.95 (13)
H11A—C11—H11B	109.5	С32—С33—Н33А	120.5
C10-C11-H11C	109.5	C34—C33—H33A	120.5
H11A—C11—H11C	109.5	C35—C34—C33	120.29 (13)
H11B—C11—H11C	109.5	C35—C34—H34A	119.9
C30—B1—C24	113.19 (10)	C33—C34—H34A	119.9
C30—B1—C12	102.64 (10)	C34—C35—C30	122.65 (12)
C24—B1—C12	113.30 (10)	C34—C35—H35A	118.7
C30—B1—C18	112.26 (10)	С30—С35—Н35А	118.7
N2—C1—N1—C2	131.82 (12)	C12—B1—C18—C19	37.60 (16)
N3—C1—N1—C2	-48.86 (17)	C30—B1—C18—C23	-34.35 (16)

N2—C1—N1—C3	-41.71 (17)	C24—B1—C18—C23	88.19 (13)
N3—C1—N1—C3	137.61 (12)	C12—B1—C18—C23	-149.24 (11)
N3—C1—N2—C4	151.00 (12)	C23—C18—C19—C20	0.44 (18)
N1—C1—N2—C4	-29.68 (17)	B1-C18-C19-C20	174.04 (12)
N3—C1—N2—C5	-8.90 (17)	C18—C19—C20—C21	-0.5 (2)
N1—C1—N2—C5	170.42 (11)	C19—C20—C21—C22	0.17 (19)
C1—N2—C5—C6	46.02 (15)	C20—C21—C22—C23	0.09 (19)
C4—N2—C5—C6	-114.81 (12)	C21—C22—C23—C18	-0.1 (2)
N2-C5-C6-C7	-61.58 (13)	C19—C18—C23—C22	-0.17 (18)
C5—C6—C7—N3	43.84 (15)	B1—C18—C23—C22	-173.77 (12)
N2-C1-N3-C8	158.29 (11)	C30—B1—C24—C25	-146.70 (11)
N1—C1—N3—C8	-21.04 (17)	C12—B1—C24—C25	-30.36 (16)
N2-C1-N3-C7	-11.55 (18)	C18—B1—C24—C25	91.38 (13)
N1—C1—N3—C7	169.12 (11)	C30—B1—C24—C29	40.54 (16)
C6—C7—N3—C1	-8.01 (17)	C12—B1—C24—C29	156.87 (11)
C6—C7—N3—C8	-178.46 (11)	C18—B1—C24—C29	-81.39 (13)
C1—N3—C8—C9	108.96 (13)	C29—C24—C25—C26	-1.56 (18)
C7—N3—C8—C9	-80.43 (13)	B1-C24-C25-C26	-174.78 (11)
N3—C8—C9—O1	17.68 (18)	C24—C25—C26—C27	0.92 (19)
N3—C8—C9—O2	-162.04 (10)	C25—C26—C27—C28	0.51 (19)
O1—C9—O2—C10	1.81 (19)	C26—C27—C28—C29	-1.2 (2)
C8—C9—O2—C10	-178.48 (10)	C27—C28—C29—C24	0.5 (2)
C9—O2—C10—C11	88.51 (14)	C25—C24—C29—C28	0.87 (18)
C30—B1—C12—C17	-84.93 (13)	B1—C24—C29—C28	174.15 (11)
C24—B1—C12—C17	152.66 (11)	C24—B1—C30—C31	30.10 (16)
C18—B1—C12—C17	35.71 (16)	C12—B1—C30—C31	-92.38 (13)
C30—B1—C12—C13	86.92 (14)	C18—B1—C30—C31	147.12 (11)
C24—B1—C12—C13	-35.48 (16)	C24—B1—C30—C35	-158.21 (11)
C18—B1—C12—C13	-152.44 (11)	C12—B1—C30—C35	79.31 (13)
C17—C12—C13—C14	-1.62 (18)	C18—B1—C30—C35	-41.18 (15)
B1-C12-C13-C14	-173.97 (12)	C35—C30—C31—C32	0.13 (18)
C12-C13-C14-C15	1.1 (2)	B1—C30—C31—C32	172.25 (12)
C13—C14—C15—C16	0.21 (19)	C30—C31—C32—C33	-1.0 (2)
C14—C15—C16—C17	-0.78 (19)	C31—C32—C33—C34	1.1 (2)
C15—C16—C17—C12	0.13 (19)	C32—C33—C34—C35	-0.39 (19)
C13—C12—C17—C16	1.04 (18)	C33—C34—C35—C30	-0.5 (2)
B1-C12-C17-C16	173.48 (11)	C31—C30—C35—C34	0.65 (18)
C30—B1—C18—C19	152.49 (11)	B1-C30-C35-C34	-171.68 (12)
C24—B1—C18—C19	-84.97 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C10—H10 <i>B</i> ···O1 ⁱ	0.99	2.44	3.397 (2)	163

Symmetry code: (i) -x, y-1/2, -z+1/2.